Secure Decentralized Learning - Internship H/F

CEA
Postée il y a 17 jours

Les missions du poste

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au coeur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

- La conscience des responsabilités
- La coopération
- La curiosité
Context : Machine learning plays a central role in many applications, and the increasing adoption of decentralized solutions, combined with dependability requirements, necessitates that learning tasks BE carried out in a decentralized manner. In such settings, nodes in the system can assume multiple roles : performing learning on their local data while also aggregating the computational results of other nodes.
In this context, we aim to achieve confidentiality, ensuring that private local data is not leaked while providing a practical solution.
Objective : The goal of this internship is to explore the combination of Multi-Party Computation (MPC) and Differential Privacy (DP) to assess the feasibility and effectiveness of these approaches in ensuring confidentiality.
Our team has previously conducted an exploratory study on MPC in the Federated Learning context, which provides a strong foundation for studying the integration of Differential Privacy techniques.
The successful candidate will join the Laboratory for Trustworthy, Smart, and Self-Organizing Information Systems (LICIA) at CEA LIST, working in a multicultural, multidisciplinary environment with the opportunity to collaborate with external researchers.
Methodology : The intern will BE responsible for the following tasks :
Become familiar with the Differential Privacy principles.
Conduct a state-of-the-art review of Differential Privacy in Federated Learning and its combination with Multi-Party Computation.
Become familiar with the MPC solution developed in the laboratory.
Select a Differential Privacy approach and design a solution to integrate IT with the existing MPC solution.
Implement the integrated solution.
Evaluate the performance of the solution.

Requirements :
Background in computer science or a related field, with a focus or strong interest in distributed systems, cryptography, and machine learning.
Programming skills in languages commonly used for cryptographic or machine learning tasks (e.g., Python, C++, or Rust).
Comfortable working in English, both for communication and documentation purposes.

Lieu : Palaiseau
Contrat : Stage
Partager l'offre à un ami
Accueil / Emploi / Emploi Palaiseau / Emploi